If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-28x+4=12
We move all terms to the left:
49x^2-28x+4-(12)=0
We add all the numbers together, and all the variables
49x^2-28x-8=0
a = 49; b = -28; c = -8;
Δ = b2-4ac
Δ = -282-4·49·(-8)
Δ = 2352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2352}=\sqrt{784*3}=\sqrt{784}*\sqrt{3}=28\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-28\sqrt{3}}{2*49}=\frac{28-28\sqrt{3}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+28\sqrt{3}}{2*49}=\frac{28+28\sqrt{3}}{98} $
| 2x+7x=2170 | | 10x(10)+17=180 | | 5z+8=10 | | 13x+2x+22=-23 | | T={(6+7)x4}+2(1/2(6)(4) | | 6s–11=6s+24 | | 4x/5+6=15 | | 3×(2a+6)=3a-12 | | 3v=7v-96 | | 7x+54=12x-40 | | 8j+2-3j=+8-5j | | 64=-16t^2+96t+112 | | 3x²-15=33 | | -4.9x^2-4.5x+14=0 | | 9x-8=7x–4 | | -1(x)=3x2-2x+1 | | x+½x=149 | | 8(x+1)=2x+26 | | 9xX2=52 | | x+2x=149 | | -7x(+6)=42 | | 4x/2=8/4 | | 4x/2=8/2 | | N+3(x)=4x-5 | | 36+x^2=85. | | 7+9w=-20= | | (108-x)+(90-x)=210 | | 12(0)+9y=10 | | 8a+17=5a-5 | | |x-3|-10=-7 | | 14x=297-4x | | 1+5/8x=1/4x+10 |